
SWAN: Stitched Wi-Fi ANtennas

Yaxiong Xie, Yanbo Zhang, Jansen Christian Liando, Mo Li
School of Computer Engineering, Nanyang Technological University, Singapore

{yxxie,zhang.yanbo,cjansen,limo}@ntu.edu.sg

ABSTRACT

This paper presents our experience in designing, implement-

ing, testing, and applying a general-purpose antenna exten-

sion solution with commodity Wi-Fi. The proposed solution,

SWAN, builds an array of stitched antennas extended from

the radio chains of commodity Wi-Fi. SWAN has low hard-

ware cost and provides easy-to-use interfaces embedded in

the Linux kernel. Two application cases for wireless sensing

and communication are presented that proves the usefulness

of the solution. SWAN is able to provide over 3× performance

improvement on Wi-Fi azimuth estimation and localization

and over 30% improvement on Wi-Fi throughput over origi-

nal Wi-Fi AP with three fixed antennas.

CCS CONCEPTS

•Networks→Wireless access points, base stations and

infrastructure;

KEYWORDS

Antenna Extension, MIMO, Localization, AoA Estimation,

Antenna Slection, Antenna Switching, Spatial Diversity

ACM Reference Format:

Yaxiong Xie, Yanbo Zhang, Jansen Christian Liando, Mo Li. 2018.

SWAN: Stitched Wi-Fi ANtennas. In The 24th Annual International

Conference on Mobile Computing and Networking (MobiCom ’18),

October 29-November 2, 2018, New Delhi, India. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3241539.3241572

1 INTRODUCTION

An array of many antennas helps a wide range of wireless

sensing and communication applications, e.g., a phased-array

antenna enables RF sensing system to estimate the signal

azimuth with higher resolution and better accuracy [17, 51],

which further supports many applications including indoor

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00

https://doi.org/10.1145/3241539.3241572

localization, passive tracking, activity recognition, etc. Com-

munication also benefits from the spatial diversity or multi-

plexing gain provided by a large antenna array, e.g., antenna

selection significantly improves the communication through-

put of MIMO systems.

Most commodity Wi-Fi network interface cards (NIC),

however, only support three antennas (some Wi-Fi APs have

five or six antennas but they are separately used for 2.4 GHz

and 5 GHz radios). Increasing the antenna number results in

increased design complexity, and thus, high cost. While the

antenna elements (either printed or external antennas) them-

selves are usually inexpensive, the RF components of the

radio chains, including low-noise amplifiers, downconvert-

ers, analog-to-digital (ADC) or digital-to-analog converters

(DAC), are expensive and they do not follow Moore’s law.

The digital processing complexity also increases exponen-

tially with the antenna number [16, 43], e.g., BigStation [56]

has to shift the basedband computation to PC software us-

ing software-define-radio and requires 15 PCs to support

real-time signal processing of 12 antennas. A many antenna

Wi-Fi NIC, therefore, requires extremely high speed base-

band processor, and thus high hardware cost.

While tremendous efforts have been made to building

many antenna systems, most of those efforts focus on build-

ing specially purposed systems like large scale MIMO [8,

16, 33, 43, 49, 56], full-duplex communication [5, 40, 44],

synthetic aperture radar (SAR) [1, 27, 38], and with spe-

cial hardware support [7, 49] or software-defined-radio plat-

forms [43, 47]. Few studies have been performed with com-

modity Wi-Fi. Phaser [11] is a recent attempt to build large

phased-array on commodity Wi-Fi by combing multiple 3-

antenna Wi-Fi NICs. Phaser makes use of the radio chains

of multiple Wi-Fi NICs and by doing that introduces signifi-

cant hardware cost - more radio chains than antennas are

used in Phaser (one radio chain from each of those NICs is

connected with each other for synchronization purpose and

thus wasted). Phaser is a special purpose platform dedicated

to angle-of-arrival (AoA) estimation. Since the NICs are on

different Wi-Fi APs, they do not work cooperatively as a

cohort to provide general Wi-Fi communication services.

In this paper, we propose SWAN (Stitched Wi-Fi ANten-

nas) as a low-cost general-purpose antenna extension to

commodity Wi-Fi. Instead of including more radio chains or

NICs which are expensive, we provide an array of stitched

antennas extended from the original three radio chains of the

Wi-Fi AP. The antennas are stitched with RF switches, and

the AP is able to configure the RF switches to select a com-

bination of antennas for transmitting or receiving a packet.

All components are connected through standard hardware

interfaces and work in a plug-an-play mode, without any

hardware modifications at the AP side. The total hardware

cost of SWAN including antennas, RF switches, an external

Arduino board for control, etc., is below $100. We show that

SWAN can be easily scaled to support tens or even hundreds

of antennas to one commodity AP.

SWAN also provides a set of general user programming

interfaces embedded in the Linux kernel of the Wi-Fi AP.

SWAN follows the general Wi-Fi transmission and reception

procedures in Linux kernel so the users of SWAN can simply

use existing socket interfaces. At the same time, SWAN al-

lows its users to configure the antenna combinations to send

and receive packets through simple descriptors. The control

details for accurately and swiftly configuring RF switches as

well as annotating packets are made transparent to the users

of SWAN. The code of SWAN is public[30]. SWAN devises

special solutions to the challenges that arise from the sys-

tem requirement in fast control exchange as well as reliable

packet annotation, the effectiveness of which are evaluated

with experiments on our 12-antenna SWAN prototype.

Being a general purpose platform, SWAN allows easy

scripting to task underlying APIs to support different user

applications. In this paper, we describe our experience in

using SWAN for two application cases: (1) We build a virtual

phased-array and form a circular array for wireless azimuth

estimation and indoor localization; (2)We build aMIMO com-

munication system with antenna selection that harnesses

spatial diversity to improve throughput. Our experiment re-

sults show significant improvements brought by SWAN to

the performance of both application cases.

The rest of the paper is structured as follows. We start

with the design of SWAN in §2. §3 and §4 present our expe-

riences applying SWAN to building a virtual phased-array

for wireless sensing and to improving MIMO communica-

tion with antenna selection, respectively. § 5 illustrates how

SWAN can scale to support a large number of antennas. §6

discusses related works in the field. §7 concludes this paper.

2 SWAN DESIGN

We introduce the detailed design of SWAN. We begin with

the architecture and hardware design, followed by the user

interface and workflow of SWAN.

2.1 Architecture

Architecture. SWAN extends the antenna array of commod-

ity AP by connecting each radio chain to multiple antennas

through RF switches, which features a plug-and-play mode.

Access Point

SP4T SP4T SP4T

MCUUUCUCCMMMM

SP TSP4T SP TSP4T SP TP4T
GPIO

Ethernet

Radio chains

Extended array

(a) (b)

Extended 12-antenna array

WPJ558

Arduino

PE42442

Ethernet
USB

Figure 1: (a) The architecture of SWAN. (b) A prototype

built with a WPJ558, three PE42442 RF switches and

an Arduino board.

Figure 1 (a) illustrates the architecture of SWAN based on

single pole four throws (SP4T) RF switches as an example.

Specifically, each of the three radio chains of the AP is con-

nected to four antennas through SP4T RF switch using coax-

ial cable (RG50) and a 12-antenna array is thus obtained.

SWAN uses an external micro-controller (MCU) that con-

nects to all RF switches and controls the antenna switch

through GPIO. Finally, the external MCU is connected to

the AP through Ethernet cable which enables the control

exchange between the AP and theMCU. For each radio chain,

the AP is able to pick up any one out of the four antennas to

transmit or receive a Wi-Fi packet, which gives 4× 4× 4 pos-

sible antenna combinations for configuring the three radio

chains. The AP configures the selected antenna combination

and signals the MCU to switch the three SP4Ts to connect to

the selected antennas for packet transmission and reception.

The system can easily be scaled to a larger array of anten-

nas by applying higher split RF switches (e.g., using SP8T for

eight throws, which gives us 8×8×8 antenna combinations),

or cascaded connection of multiple RF switches (which we

will detail in Section 5).

Hardware.We build a SWAN prototype with commercial-

off-the-shelf (COTS) and low-cost hardware, as shown in

Figure 1 (b). The hardware used can be easily replaced with

other general COTS substitutes of similar functionality.

We test with two different AP models - COMPEX WPJ558

and TP-Link WDR4300 (cost ∼$67). The SP4T RF switches

used are Peregrine PE42442 (cost∼$1.32), which provides fast

switch speed, i.e., 225ns, low signal loss, i.e., 0.8 and 1.0 dB in

2.4GHz and 5GHz respectively, and high linearity, i.e., 58dBm

IIP3 and 110dBm IIP2 [18]. We use an Arduino board (cost

∼$22.9) to serve as the external MCUwith its GPIO to control

the PE42442 switches. Specifically, we connect twoGPIO pins

of the Arduino to a two-pin voltage CMOS control interface

of PE42442. Arduino MCU controls PE42442 by changing

the voltage state on the two control pins. The Arduino board

is powered via USB from the AP and connected through an

Ethernet cable to the AP for control exchange. All hardware

and interfaces are standard and nomodification is required to

the AP or Arduino board. The total hardware cost including

the antennas and all wirings is below $100.

2.2 User Interface and Workflow

SWAN provides an in-kernel user interface that allows users

of SWAN to configure the antenna combinations for transmit-

ting and receiving each individual Wi-Fi packet. We detail

the user interface and the workflow of transmission and

reception in the following.

Transmissionflow. SWAN follows the normal packet trans-

mission flow of Linux kernel. In addition, SWAN allows as-

sociating each packet with a 3-byte descriptor ant-comb to

indicate which antenna combination is to be used to transmit

the packet. Each byte of ant-comb indicates the antenna to

use for one radio chain. The value of ant-comb descriptor is

set by the user application when generating theWi-Fi packet

and the antenna combination is thus selected (otherwise the

default antenna combination will be used).

Since the Wi-Fi NIC takes a period of time to gain the

channel access before transmitting the packet, SWAN makes

use of that time interval to signal the choice of antenna

combination to the Arduino MCU and switch the antenna

accordingly before the actual transmission of every packet.

Figure 2 (a) illustrates the workflow for transmitting a

packet in SWAN. Wi-Fi NIC prepares a transmitting queue

(TX-PKT Queue in Figure 2 (a)) to buffer all data packets de-

livered from Linux kernel and pending to be transmitted. To

track the packets that have been delivered to NIC, common

NIC drivers in the kernel (e.g., ath9k for most Qualcomm

chips) assign a unique frame ID for every packet, e.g., tx_-

desc_id in ath9k. SWAN thus, maintains an in-transmission

packet queue for all packets ath9k has delivered to NIC,

where each entry records a frame ID tx_desc_id as well as

its antenna combination ant-comb. When NIC successfully

transmits a packet, an 802.11 ACK frame will be received

and in the interrupt request (IRQ) handler of 802.11 ACK

frame, SWAN does two jobs – (1) to dequeue the relevant

record for the transmitted packet as normally done in ath9k

IRQ procedure, and (2) to obtain the antenna combination

descriptor for the next packet and send it to the Arduino.

The Arduino MCU then configures the RF switches before

the next packet is on its way to the antenna.

When the transmission of one packet in the NIC queue

fails, an interrupt is still triggered by the NIC. SWAN de-

queues the failed packet from the in-transmission packet

queue according to the frame ID. If a packet is passed to

ath9k when the in-transmission queue is still empty, i.e., no

prior packet is buffered in the NIC, SWAN still enqueues its

Tx path
NIC FIFO Queue

ACK
frame

(Frame, ant-comb)

Frame ID N ant-comb N
...

Frame ID 3

Frame ID 1

...
ant-comb 3

ant-comb 1
ant-comb 2Frame ID 2

TX-PKT Queue

Frame ID 1

ant-comb 2

Wi-Fi NIC hardware Rx path

Dequeue

Enqueue

Data plane

Control plane

ACK IRQ handler
Send to Arduino

(Frame, ant-comb)

Wi-Fi NIC
hardware Rx path

Data plane

Control plane

Data IRQ handler

Interrupt Data frame
Data frame

Send to Arduino

Ant tagging

RX-ANT Queue
Ant selectionant-comb

of next pkt

Dequeue

Enqueue

ant-comb
of prev pkt

(a) Transmission workflow

(b) Reception workflow
config_rx_ant()

ant-comb N

ant-comb 1
ant-comb 2

...

Figure 2: The workflow of (a) packet transmission and

(b) packet reception of SWAN.

frame ID and ant-comb but immediately sends the antenna

combination to the Arduino without waiting for the ACK

interrupt triggered by the successful reception of last packet.

Reception flow. SWAN follows the packet reception flow

of Linux kernel, but provides additional functionalities. Fig-

ure 2 (b) illustrates the workflow for receiving a packet in

SWAN. First, SWAN tags a 3-byte descriptor ant-comb to

every received packet, which annotates the antenna com-

bination used to receive the current packet. The ant-comb

descriptor can be extracted by users of SWAN to facilitate

various application purposes. Second, SWAN adds a control

interface config_rx_ant() in the NIC driver for setting a se-

quence of receiving antenna combinations. Specifically, a

receiving antenna queue (RX-ANT Queue in Figure 2(b)) is

constructed where each entry gives an ant-comb indicating

the antenna combination to receive the packet.

In the IRQ handler of each received data packet, SWAN

does two jobs – (1) to examine the actual antenna combi-

nation used to receive the packet and annotate the packet

with the ant-comb descriptor, and (2) to decide the antenna

combination used to receive the next packet and send it to

the Arduino. SWAN decides the antenna combination based

on the next user defined ant-comb in the receiving antenna

queue. The entry is dequeued when a successful packet is re-

ceived using that antenna combination. If the queue is empty,

the default ant-comb is used for receiving new packets.

Challenges. The designed user interface and workflow en-

sures correct control logic in SWAN to operate the stitched

antennas. In order to make the solution practically feasible,

however, we face two challenges. First, SWAN requires fast

control exchange between the AP and the Arduino to achieve

μs-level antenna switch. This is necessary to accommodate

the antenna switch within short Wi-Fi transmission and re-

ception intervals. Second, SWAN requires reliable packet

annotation, i.e., the antenna combination ant-comb applied

to each packet is accurate. There are several ways that could

lead to wrong antenna configuration in SWAN, e.g., failures

in switching the antennas due to the lost of control com-

mands, or delayed antenna switching that results in incor-

rect antenna combinations used to transmit or receive the

target packet. In the following sections, we will detail our

techniques to address the two challenges.

2.3 Fast control exchange

Time stringency. 802.11 Wi-Fi transmission and reception

impose stringent time requirement on antenna switching.

Wi-Fi adopts CSMA where the shortest time interval from

sensing the idle channel to transmitting or receiving the next

packet is DIFS = 34 μs (Figure 4 illustrates a Wi-Fi transmis-

sion example). Therefore, SWAN has to signal the Arduino

and switch the antenna combination within the 34 μs DIFS
duration, to guarantee correct antenna configurations.

Maintaining a flow over the Ethernet cable between the

AP and the Arduino, e.g., TCP, is a natural choice for convey-

ing those control messages, which, however, is known time

consuming (hundreds of microseconds to milliseconds of

latency). We propose a fast control exchange method which

rides on Linux TCP sockets but bypasses all time-consuming

operations. First, the antenna combinations are finite, e.g.,

4 × 4 × 4 = 64 combinations with three SP4T switches, so a

total number of 64 repeated ant-comb control messages are

used. We thus can build template TCP sockets beforehand

and reuse them in Linux kernel without instantly construct-

ing them. Second, we bypass all TCP retransmission and flow

control procedures to save time because the Ethernet cable

directly connects the AP and the Arduino, and only serves

the control exchange between them. Third, there is no need

for parsing the TCP or IP header as SWAN is the only user

of the physical link, so we let the Arduino skip the standard

packet inspection procedure in the Linux Ethernet driver.

Packet sketcher. We build a packet sketcher to "sketch"

template packets for control exchange. We build a TCP con-

nection and then send all possible antenna combinations in

sequence, which triggers the Ethernet NIC driver (ag71xx

for Atheros AR8327N in our system setting) to construct all

relevant TCP packets and send through ag71xx_hard_start_-

xmit() to the NIC hardware. The packet is buffered in sk_buff

for each transmission. We modify ag71xx_hard_start_xmit()

of the AP to store all constructed packets as templates to sig-

nal different antenna combinations. Figure 3 illustrates the

process. Packet sketching is immediately done after the TCP

ant-comb N

ag71xx_hard_start_xmit()

Ethernet NIC driver
(Atheros ag71xx)

sk_buff

NIC hardware (AR8327N)

Arduino (receiver)
TCP connection

sk_buff N ant-comb N
net_device

ant-comb 2
net_device

ant-comb 1
net_device

sk_buff 2

sk_buff 1

Packet sketcher

... ...

Figure 3: Packet sketching in SWAN.

connection is established and the stored packet templates

can be used as long as the TCP connection lasts.

In operation. SWAN swiftly react to the Wi-Fi packet trans-

mission or reception. The antenna combination ant-comb is

sent to the Arduino by the 802.11 ACK or data frame IRQ

handler of ath9k. Specifically, the AP’s IRQ handler directly

sends over the sk_buff corresponding to the selected antenna

combination through ag71xx_hard_start_xmit().

On the Arduino side, the Ethernet NIC stores the received

packets in a linear buffer and handles the buffer to the NIC

driver. Since SWAN is the only application running on the

Ethernet link, there are only two types of packets that are

supposed to be received by the Arduino – (1) the TCP control

packets including SYN, ACK, and FIN, which the Arduino’s

NIC driver needs to decode and then pass to the TCP stack for

maintaining the TCP connection, and (2) the AP’s command

that conveys the antenna combination ant-comb, which due

to the time limit should not be passed to TCP stack for further

inspection.

SWAN is able to distinguish the two types of packets by

solely examining their packet length. The command packet

has a fixed size of 90 bytes including 20 byte payload, and

the TCP control packet only has the fixed header and is of

70 bytes. Therefore, every time when the Ethernet driver

receives a packet, it examines the packet length and directly

extracts the antenna combination from the payload (always

at the end of the packet) without further parsing the en-

tire packet headers. By doing the above SWAN effectively

conveys control commands through the TCP pipe.

2.4 Reliable packet annotation

As we previously mentioned, the antenna configuration in

SWAN may fail due to the lost of control commands or de-

layed antenna switch that takes effect after the actual packet

is transmitted or received. It is important for SWAN to detect

such failures and feedback to its users in a reliable way, so

the users of SWAN are aware and thus able to adjust their

operations accordingly. SWAN returns an ant-comb descrip-

tor to the user application after every packet transmission or

reception, which tells the actual antenna configuration used

for that packet. We use the value of 0xFFFFFF to indicate a

failed or uncertain antenna configuration.

For every antenna configuration command, SWAN re-

quires the Arduino to send back an TCP packet for acknowl-

edging the successful reception of the transmitted command.

We denote such a packet as SWAN ACK. The AP waits for the

SWANACK from the Arduino. The SWANACK is considered

not received if it does not yet arrive by the completion of

current packet transmission or reception (until the 802.11

ACK or data frame interrupt generated from the NIC chip).

Figure 4 gives an example timeline when the AP transmits

a packet. SWAN annotates each successfully transmitted or

received packet based on the relationship of the following

three time parameters: 1) the switching delay tsw between

the completion of the previous packet, e.g., at t1 in Figure 4,

and the completion of antenna switch by the Arduino at

t4; 2) the channel accessing interval tac before the start of
the packet transmission or reception, as shown in Figure 4;

and 3) the air time tair of the received or transmitted packet.

There are four possible cases:

• Case 1: the switching delay tsw is smaller than the

channel accessing interval tac , i.e., tsw < tac . In this

case, the antenna configuration is deemed successfully

done before the actual Wi-Fi packet transmission or

reception. Therefore, SWAN annotates the packet with

the expected antenna combinations ant-comb.

• Case 2: the switching delay tsw is larger than channel

accessing interval tac , but smaller than tac plus the

packet air time, i.e., tsw < tac + tair . In such a case,

the antenna switching behavior might happen in the

middle of the transmission or reception of the current

packet, so the configuration is considered failed or

uncertain. SWAN annotates the packet with 0xFFFFFF

for the user application to take further actions.

• Case 3: the switching delay tsw is larger than the packet

interval plus the packet air time, i.e., tsw > tac + tair .
In this case, the antenna switching behavior is done

after the completion of current packet transmission

or reception, so SWAN uses the previous ant-comb to

annotate the packet. The user application may need to

take further actions with such a case.

• Case 4: in case the SWANACK from the Arduino is not

received, SWAN annotates the packet with 0xFFFFFF.

Antenna switching delay. Directly measuring the delay

by tsw = t4 − t1 is inaccurate, since the AP and the Arduino

are not synchronized. SWAN thus divides the delay tsw into

three parts, and measures them separately. The first two

parts are the software delay tAP at the AP side and tAr at the
Arduino side, which are measured according to the clock of

AP and Arduino respectively. Specifically, tAP describes the

interval that the AP takes in its kernel to prepare the control

AP

Arduino

ACK DIFS

Interrupt

PreambleBack-off
...

Data

Interrupt

Command packet SWAN
ACK

Timing packet

Data SIFS

Interrupt

Reported to kernel

Switching finished

Wi-Fi NIC

R

Figure 4: Important time points on the timeline ofWi-

Fi transmission and packet annotation of SWAN.

command and is measured as tAP = t2 − t1. tAr describes

the time interval between the Arduino receives the control

command at t3 and performs the antenna switching at t4,
and is measured as tAr = t4 − t3. The third part is the trans-

mission delay teth on the Ethernet cable between the AP and

the Arduino, which involves the clocks at the AP and the

Arduino, and cannot be measured directly. SWAN makes use

of the SWAN ACK from Arduino and measures the round-

trip-time (RTT). Specifically, the Arduino measures the time

t5 it sends the SWAN ACK and uses a separate timing packet

to deliver t3, t5 and tAr to the AP, as illustrated in Figure 4.

The transmission delay over Ethernet is thus calculated as:

teth = [(t6 − t2) − (t5 − t3)] /2 (1)

where t6 is the AP’s timestamp in receiving the Arduino ACK.

The total switching delay tsw is obtained as tAP + teth + tAr .
Since the SWAN ACK is fixed, Arduino can prepare the tem-

plate beforehand. The timing packet is also prepared before-

hand, which is a TCP template packet with empty payload.

The timing parameter t3, t5, and tAr are then instantly ap-

pended to the end of the template as the payload.

Channel accessing interval. To measure the channel ac-

cessing interval tac , SWAN samples the end of previous trans-

mission or reception, e.g., t1 in Figure 4, and the start of trans-
mitting the current packet, i.e., the start of transmitting the

preamble tpre . The IRQ handler of ath9k logs t1. The Wi-Fi

NIC logs tpre of every packet it successfully transmits or

receives, and then reports it to ath9k along with the received

data frame or the ACK of transmitted frame. The channel

accessing interval is thus measured as tac = tpre − t1.

Packet air time. The air time tair of one packets consists
of the air time of the preamble and the payload. The air time

of packet preamble is known, e.g., 40 μs for 802.11n packets.

The air time of payload can be calculated using the packet

payload length and the setting of the data rate.

2.5 Evaluation

Methodology.We conduct experimentswith the 12-antenna

prototype that we build with WPJ558 and the Arduino board,

0 3 6 9 12 15 18 21 24 27 30 33 36 39
Measured time delay (s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

4.0 s 5.4 s 22.3 s 29.5 s
34 s,98.5%

tAr
tAP
teth
tsw

Figure 5: CDF of measured software

delay tAr , tAP , teth and tsw .

0 40 80 120 160 200 240
Measured packet interval tpkt (s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

(170 s,92.1%)(161 s,86.9%)

(35 s,5.8%)

(44 s,11.5%)

Figure 6: CDF of the measured chan-

nel accessing interval tac .

35 45 55 65 75 85 95 105
Measured time delay (s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

DIFS+preamble (74 s)

60.3 s 67.4 s

ACK packet
Timing packet

Figure 7: CDF of measured delay of

the SWAN ACK and timing packet.

as shown in Figure 1. An WDR4300 Wi-Fi router is config-

ured to work as client to communicate with our prototype.

We let the SWAN AP first transmit 2 × 105 packets to and

then receive 2×105 packets from the client. The AP switches

the antenna combination for every transmitted and received

packet so that 4×105 control messages in total are exchanged

between the AP and the Arduino.

Antenna switching delay. Our experiment results demon-

strate that SWAN can promptly send the control commands

from the AP to the Arduino, which ensures short antenna

switching delay tsw . We measure the software delay tAr at
the Arduino side, the software delay tAP at the AP side, and

the transmission delay teth described in Section §2.4. We

sum the three delays and obtain the overall switching de-

lay tsw . Figure 5 plots the statistics of those delays from the

4 × 105 measurements. We see that the software delay tAr
and tAP are smaller than 4.0 μs and 5.4 μs , respectively for

90% cases, which credits to the packet sketching and fast

control exchange approaches used in SWAN. The transmis-

sion delay teth has a 90% quantile of 22.4 μs . Therefore, the
overall switching delay tsw is below 29.5 μs for 90% con-

trol exchanges. The switching delay tsw is smaller than DIFS

(34 μs) for 98.5% cases, whichmeans 98.5% control commands

are guaranteed to take effect in transmiting or receiving the

packet with the correct antenna configurations. For the rest

1.5% cases, we find that 89.8% of them are still successfully

transmitted or received with correct antenna configurations

since their switching delays tsw are smaller than the channel

accessing interval tac .

Channel accessing interval. The channel accessing inter-

val tac is the time before the packet is transmitted or received

on the antennas. DIFS sets a lower bound for tac , but its actual
duration is much larger in statistics. We measure the inter-

val tac for all 4 × 105 transmitted and received packets and

plot the tac statistics in Figure 6. We see that, Wi-Fi selects

the back-off window size from [0,16] randomly and selects

the shortest window size 0 for only 5.8% packets. We also

observe that 7.9% packets have large tac (> 173μs), which
are caused by various reasons like packet retransmissions,

channel contention failures and so on. Overall most packet

transmissions and receptions give sufficient channel access

interval for SWAN to control the antenna configurations in

time. Over 99.8% of those packets are configured with correct

antenna combinations.

SWAN ACK delay. We also measure the delay of the re-

ception of the SWAN ACK t6 and timing packet t7 from the

Arduino to the AP, and plot the statistics in Figure 7. We

see that the delays are smaller than 60.3 μs and 67.4 μs for
the SWAN ACK and timing packet for 90% cases. To help

better understand such delay, we compare the delay with

the DIFS + preamble = 74 μs , which sets a lower bound

of the time interval before the completion of the current

packet transmission or reception (assuming back-off win-

dow = 0 and payload = 0). We see from Figure 7 that 99.0% of

SWAN ACKs and 97.8% timing packets are received before

DIFS + preamble . Therefore, the processing of the control

ACK and timing packet are less likely to interfere with the

handling of new packet transmission in the AP’s NIC driver.

Transmission Reception Annotation

Success ratio 99.78% 99.92% 99.97%

Table 1: Success rate of antenna switching and packet

annotation of SWAN.

Overall success ratio. We assess the overall success ratio

of antenna switching and the accuracy in packet annotation.

We let the SWAN AP communicate with the client over a

static channel and measures the CSI of each antenna as its

signature. When a packet is received, we can compare its

received CSI with all antenna signatures and figure out the

true antenna configuration used for that packet. We com-

pare the true antenna configuration with the ant-comb that

the AP sends to the Arduino and derive the success ratio in

antenna configuration. We also compare the true antenna

configuration with the annotated ant-comb of each packet

derive the success ratio of annotation. Table 1 summarizes

the success ratios for transmission antenna switching, recep-

tion antenna switching, and packet annotation. We see that

SWAN successfully switches the antenna for 99.78% packet

transmissions and 99.92% packet receptions. The packet an-

notation is correct for 99.97% packets. Among the unsuccess-

ful switching cases, we further observe that the percentage

of case 4 is below 0.001% since packet transmission failure

over Ethernet cable is rare. The percentage of case 2 is be-

low 1% as switching antenna in the middle of transmitting

or receiving a packet results in packet loss for most of the

time and retransmitting the packets allows SWAN adequate

time to configure the antenna correctly. At last, around 99%

switching failures fall into case 3.

3 CASE I: BUILDING VIRTUAL
PHASED-ARRAY

Phased-array is widely used as a sensing interface to estimate

angle-of-arrival (AoA) or angle-of-departure (AoD) [3, 29, 31].

Recent advances [11, 22, 23, 26, 28, 51, 53] have built phased-

array on commodity Wi-Fi with three antennas. SWAN en-

ables a new opportunity to greatly increase the antenna num-

ber in the phased-array and thus provide angle estimation

with much finer resolution and higher accuracy.

3.1 Building virtual phased-array

We measure CSI from all antennas to obtain a virtual phased-

array. We use Atheros-CSI-Tool [50] which extracts the CSI

of all data subcarriers and collect CSI from all 12 antennas

on our SWAN prototype (12 × 56 matrix on a 20 MHz Wi-Fi

channel). Limited by the radio chains on the AP, we cannot

concurrently measure all 12 antennas. Instead we measure

the 12 antennas when receiving multiple packets and syn-

thesize the CSI matrix from individual CSI measurements.

CSI grouping. The phase error across different antennas,

however, hinders us from directly grouping CSI matrices

across packets. A phased-array must preserve accurate dif-

ference of CSI phases across antennas, which however is

impaired by the carrier frequency offset (CFO) that adds ran-

dom phase offsets to individual packets [50]. The intuition

of our solution is illustrated in Figure 8. When we measure

the CSI of first three antennas (antenna 1-3 in the figure)

with the first packet, due to CFO there is an offset e1 of

the measured phases on all the three antennas from their

true phases. Nevertheless the phase differences are accurate

across themselves. When we measure the CSI of the second

three antennas (antennas 4-6), similarly our measured phases

are subject to an offset e2 � e1, as Figure 8 (a) depicts. In

Ph
as

e

1 2 3 4 5 6

Ph
as

e

Antenna
1 2 3 4 5 6

(a) (b)

Antenna
Ground truth
2nd measurement
1st measurement

Ground truth
2nd measurement
1st measurement

Figure 8: (a) The phase offsets of CSI from two consec-

utive measurements are different due to CFO. (b) We

cancel Δe by using a redundant antenna in both mea-

surements and align the two measurements.

order to correctly group the two measurements, we need

to remove the difference Δe = e2 − e1, which however is

impractical to measure with commodity Wi-Fi [50].

We propose to cancel Δe = e2−e1 by using a redundant an-
tenna in both consecutive packet measurements. As shown

in Figure 8 (b), we keep the first antenna in our antenna

combination for the second measurement (antenna 1, 4, and

5). By aligning the phase offset of antenna 1 with its offset

in the previous measurement, we align all phase measure-

ments across five measured antennas, which preserve the

phase difference across all antennas. A scheduled antenna

measurement scheme is accordingly designed to ensure one

redundant antenna included in any consecutive measure-

ments (so we obtain CSI from two new antennas in each

measurement). Script 1 gives the user application script for

the scheduled antenna measurements.

It is worth emphasizing that the antenna measurement

process can be completed within very short time. For exam-

ple, only five packets are needed to collect CSI from all 12

antennas in Script 1. Each packet takes around 190μs and
the entire measurement process can be completed in less

than 1ms , which is shorter than the coherence time in many

static and mobile scenarios. Therefore, we are able to es-

timate the channel’s intrinsic characteristics like the AoA

of signal propagation paths. The theoretical upper bound

that our antenna measurement scheme can support under

various channel dynamics is derived in Section §3.3. Unlike

the time varying offsets e1 and e2, the phase offsets across
radio chains are fixed and can be accurately measured by

connecting the radio chains of transceivers. We apply the

phase calibration presented in [53] to eliminate the phase

offsets introduced by radio chains.

3.2 AoA estimation

We perform AoA estimation atop the phased-array. Uniform

linear array (ULA) is widely used because of the ease of

signal processing, but only provides a field view of 120◦, i.e.,

[30◦, 150◦], due to its linear arrangement of antennas [17].

On the other hand, uniform circular array (UCA) provides

a field view of 360◦ and maximize the coverage in sensing

Script 1: Scheduled antenna measurement

Input: No. of antennas Nr attached to each chain

1 ant-comb[3]={0} ; // 3-byte descriptor

2 m = 0;

3 for i = 1; i ≤ � 3Nr

2 � do

4 for j = 0; j ≤ 3; j �m do

5 ant-comb[j]++;

6 if ant-comb[j] > Nr then

7 ant-comb[j] = Nr

8 m = (m + 1) mod 3;

9 config_rx_ant(ant-comb[3]);

10 [pkti , csii , ant-combi] = recv_pkt()

11 CSI = [csi1, csi2, . . . , csi � 3Nr2 �
] ; // CSI grouping

and signal processing. Commodity Wi-Fi AP is only able

to support the ULA due to the only three antennas. With

the phased-array built from SWAN, we adopt the UCA to

estimate AoA. Figure 9 (a) shows the 9-antenna UCA that

we build for AoA estimation.

We derive the relationship between signal phases across

antennas in the UCA. For an UCA with radius r and con-

sisting of N uniformly distributed antennas, as shown in

Figure 9 (b), the angular position of its nth antenna is given

by nφ, where φ = 2π
(
n
N

)
and n = 1, 2, . . . ,N . Following the

geometry in Figure 9 (b), the steering vector of the UCA is

given by:

c(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e2π
r cos(φ−θ)

λ

e2π
r cos(2φ−θ)

λ

. . .

e2π
r cos(Nφ−θ)

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where θ is the AoA of an incident wave.

MUSIC cannot be applied to UCA for AoA estimation since

it cannot works with mutually coupled singals received from

antenna array. Spatial smoothing can be applied together

with MUSIC to deal with the coherent signals received from

ULA, which, however, fails for signals received from UCA.

Therefore we adopt a maximum likelihood estimation algo-

rithm that works with mutually coupled signals. If we denote

the transmitted signal asu(t), the signal received by the UCA
can be modeled as:

s(t) =
L∑
l=1

αl c(θl)u(t − τl) (3)

where L, θ , τ , and α is the number of multipath signals, the

AoA, the time of flight (ToF), and the amplitude, respectively.

To estimate those three unknown parameters, we minimize

the difference between the signal s(t) we model and the

-d

Origin point

r

r

(a) (b)

Figure 9: (a) An UCA with nine antennas. (b) Signal

travels different distances to arrive at different anten-

nas in the UCA, which results in the phase differences

across antennas.

signal y(t) we receive:

[T,Θ,A] = argmin
T ,Θ,A

‖y(t) − s(t)‖ (4)

where T = [τ1,τ2, . . . ,τL]
T , Θ = [θ1,θ2, . . . ,θL]

T and A =

[α1,α2, . . . ,αL]
T are the ToF, AoA and amplitude of L paths.

We borrow the method of xD-Track [51] to solve the opti-

mization problem described in Eqn 4 to obtain Θ.

3.3 Evaluation

We evaluate the performance of SWAN in AoA estimation in

this section.We also build and evaluate an indoor localization

system based on the estimated AoA.

Methodology. We build a 9-antenna UCA for Wi-Fi APs in

our design (N=9). In the UCA, the distance between two adja-

cent antennas are fixed to λ/2, where λ is the wavelength of

the carrier wave. All the antennas are located at the vertexes

of an nonagon, with an edge length of λ/2. The radius of

the UCA is r = λ/(4 sin 20◦). Figure 9 (a) depicts the testbed
setting of the UCA. The antenna distance between antennas

in ULA is also fixed to be λ/2. We also build a 3-antenna ULA

for comparison. The distance between adjacent antennas is

also fixed to be λ/2.
We configure an Arduino YUN to be a Wi-Fi signal emit-

ter. A commodity Wi-Fi AP (WPJ558 or WDR4300) works in

monitor mode to receive the signal sent from the Arduino

YUN. Line-of-Sight (LoS) between the AP and the Arduino

YUN is ensured during the experiment. The AP collects the

CSI from the UCA and sends to a server to process and es-

timate the AoA from Arduino YUN. We compare the AoA

estimation performance from SWAN with a 9-antenna UCA

with a 3-antenna ULA as supported by most mainstream APs.

In localization experiment, we use two APs working in mon-

itor mode to locate the Arduino YUN. All the experiments

are conducted in two offices of 600m2 and 420m2, and one

meeting room of 54m2.

AoA accuracy.We collect CSI measured from both the UCA

and the ULA at each of 200 test locations and estimate the

0 4 8 12 16 20 24 28
AoA error (degree)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

UCA with 9 antenna
ULA with 3 antenna

Figure 10: CDF of AoA estimation errors using 9-

antenna UCA and 3-antenna ULA on Wi-Fi AP.

AoA of the direct path based on the same maximum likeli-

hood method described in Eqn 4. The ground truth is cal-

culated based on the physical locations of the AP and the

Arduino YUN. In the experiment we ensure that all test lo-

cations are within the field view of the ULA, that favors the

ULA performance. We plot the CDF of AoA estimation errors

in Figure 10. The median error from the 9-antenna UCA is

2.6◦, while that from the 3-antenna ULA array is 7.1◦. The 90
percentile errors from the UCA and ULA are 5.7◦ and 17.1◦,
respectively. We see 3× improvement of 9-antenna UCA over

3-antenna ULA in AoA estimation accuracy.

The field of view . Our experiment demonstrates that UCA

is able to have a 360◦ field of view. We put the AP with UCA

at one location and the Arduino YUN at 76 different locations.

The ground truth AoA of those 76 locations covers a range

of [0◦, 360◦]. We estimate the AoA and plot the median AoA

error at each location in Figure 11. We see that the AoA

estimation is uniformly accurate across all the test directions

with a maximum median error of 9.8◦. The average error
from all tests is 2.8◦. The UCA built with SWAN provides

360 degree field of view with moderate accuracy.

Localization. We use two APs with UCA to estimate the

AoA from the Arduino YUN. The direct path AoAs are then

used to locate the Arduino YUN, in the same way as Array-

Track [53]. We repeat the test with ULA at exact the same

AP and Arduino YUN locations. Again we ensure that the

Arduino YUN is in the field view of the ULA, which favours

its performance. Figure 12 plots the results. The median error

achieved is 0.45m with the 9-antenna UCA and 1.43m with

the 3-antenna ULA, respectively. The 90 percentile error is

0.65m with the UCA and 2.48m with the ULA. We see 3.8×

improvement in localization accuracy.

Antenna number. More antennas in the array, more ac-

curate results we may expect from SWAN. The maximum

 2° 4° 6° 8° 10°

30

210

60

240

90

270

120

300

150

330

180 0
AoA error

Figure 11: The median AoA estimation error using 9-

antenna UCA at 76 locations plotted on a polar map.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Localization error (m)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

UCA with 9 antenna
ULA with 3 antenna

Figure 12: CDF of localization error with the AoA esti-

mated using 9-antenna UCA and 3-antenna ULA.

1 2 3 4 5 6 7
Relative speed (m/s)

0

100

200

300

400

500

600

700

A
nt

en
na

nt
 n

um
be

r

655

327

219

163 131 109 932.56° 2.64°
2.83°

3.12°
3.38°

3.87°
4.19°

2

2.5

3

3.5

4

4.5

5

5.5

A
oA

 e
rr

or
 (d

eg
re

e)

Theoretical antenna number
AoA estimation error

Figure 13: The impact of mobility to the number of

antennas SWAN can support and thus to the AoA esti-

mation accuracy of the SWAN’s 9-antenna UCA.

number of antennas SWAN can enable is limited by the chan-

nel coherence time. When the channel is more stable, SWAN

can keep switching across the antennas for every received

packet and collect more CSI from more antennas. Theoreti-

cally, the coherence time is the time interval during which

the channel is considered not varying, which is usually ap-

proximated from the relative speed of the transceiver. If the

Wi-Fi is transmitting at 600 Mbps, as shown in Figure 2, the

expected transmission time of each packet is around 190 μs .
With such an transmission rate, we derive the theoretical

number of antennas that SWAN can enable for one sweep-

ing. Figure 13 plots the results. We see that even when the

transmitter moves at 7m/s , SWAN is still able to provide us

a virtual phased-array with 93 antennas.

We perform experiments to further study the impact of

the mobility to our 9-antenna UCA. We let the Arduino YUN

move away from the UCAwith a constant speed and estimate

the AoA estimation errors.We see that the error increases

slowly with the increase of speed, i.e., from 2.56◦ at 1m/s
to 4.19◦ at 7 m/s . We do not observe severe performance

degrade due to such level of movement.

4 CASE II: COMMUNICATIONWITH
ANTENNA DIVERSITY

SWAN increases the number of antennas that a commodity

Wi-Fi AP can communicate with. Antennas in the extended

array may experience entirely different channel conditions

from each other. Wisely selecting the antenna combinations

with the best channel conditions helps to maximize the spa-

tial diversity of the AP and achieve the best communication

throughput with its clients.

4.1 Communication with antenna
diversity

Spatial diversity.Weobserve that the signal strengths of an-

tennas in SWAN are highly heterogeneous. To demonstrate

the heterogeneity, we divide an area of 1.6m × 2m into 20

40cm×40cm girds and put a Wi-Fi sender at each of the girds

(30 in total) to transmit packets. We put a SWAN AP 10m
away as the receiver and let it switch the receiving antennas.

In Figure 14 (a), we plot the RSSIs from all 12 antennas with

the sender at 30 locations. We calculate the maximum RSSI

difference for each sender location by RSSImax − RSSImin ,

where RSSImax and RSSImax are the maximum and mini-

mum RSSI obtained from the 12 antennas. Figure 14 (b) plots

the results. From the two figures, we see high variation of

RSSIs across antennas as well as across sender locations. In

comparison, in Figure 14 (c), we also plot the RSSIs across

packets on each of three antennas. We see minor variations

of RSSIs on the same antenna within ±1 dB from the mean

value. The above experiment results demonstrate the spatial

diversity across antennas in SWAN. Selecting antennas with

higher RSSI helps to achieve higher throughput. Frequency

selective fading is another factor that significantly affects

1 5 10 15 20 25 30

Trace index

2
4
6
8
10
12

A
nt

en
na

 in
de

x

(a)

15

20

25

30

0 3 6 9 12 15 18 21 24 27 30

Trace index

4
6
8
10
12
14
16
18
20

R
SS

I (
dB

)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Packet index

10

15

20

25

30

35

R
SS

I (
dB

)

(c)

Antenna 1 Antenna 2 Antenna 3

Figure 14: We measure RSSIs of 12 antennas: (a) The

RSSI value of each antenna at 30 locations. (b) The

maximum RSSI differences across the 12 antennas at

each of the 30 locations. (c) The RSSI of three antennas

across 2000 packets.

the channel condition beside signal strength [39]. Since the

antennas in the array experience independent fading, select-

ing the antenna combination that results in lower selective

fading can also improve the link throughput.

Antenna selection. To harvest the antenna diversity en-

abled by SWAN, we build an antenna selection module and

embed it into the 802.11 network stack, which automatically

selects the antenna combination for transmitting Wi-Fi pack-

ets. Specifically, the antenna selection module first measures

and then compares the channel quality of all possible antenna

combinations and then selects the one that provides the best

channel. It is widely known that RSSI is not enough to quan-

tify the quality of the wideband, frequency selective faded

Wi-Fi channel [37, 48, 58]. CSI matrix fully characterizes the

Wi-Fi channel but cannot provide quantitative comparison

across channels [13]. Thus, we use the effective-SNR [13, 36]

calculated with both RSSI and CSI as the metric to quantify

the channel quality and select the antenna combinations

with highest effective SNR to communicate with.

To measure the RSSI and CSI on each antenna, we adopt a

simple antenna sweeping mechanism described in Script 2 to

collect RSSIs and CSI for all 12 antennas in the extended array,

which requires four consecutive packets. Wi-Fi NIC is able to

derive both RSSI and CSI simultaneously from a received data

packet. Therefore, the antenna selection module makes use

of existing data packets if the AP is receiving from its clients

(uplink traffic). Otherwise, the AP generates uplink traffic by

explicitly requesting the client to send the probing packets to

the AP. During the antenna sweeping, the AP as the receiver

Script 2: Antenna sweeping

Input: No. of antennas Nr attached to each chain

1 ant-comb[3]={0} ;

2 for i = 1; i ≤ Nr do

3 for j = 0; j ≤ 3; j �m do

4 ant-comb[j] = i;

5 config_rx_ant(ant-comb[3]);

6 [pkti , csii , ant-combi] = recv_pkt()

does not switch its antenna until it successfully receives one

packet with its current antenna combination. The client as

the sender keeps track of successfully transmitted packets

and stops when the required number of packets are delivered.

Though the CSI is measured for the channel from the client

to the AP, the selected antenna combination also works for

the reverse channel because of channel reciprocity.

There are several other modules other than antenna selec-

tion module in the Wi-Fi network stack to select or adapt the

communication parameters including the channel frequency,

the channel bandwidth (20 or 40 MHz), the guard interval

(400 or 800 ns) and the data rate. The modules adapt their

parameters in parallel and at different time scale. The chan-

nel frequency and bandwidth selection changes only when

the current channel becomes overcrowded. The antenna se-

lection module changes the antenna combination when the

channel coefficients change. Therefore, we keep tracking

the channel variation and restart the antenna sweeping and

re-select the best antenna combinations, when the channel

varies. The data rate is varied all the time even when the

channel is stable as it takes time for the data rate to converge

to the optimal. All the modules operates independently. A

joint rate antenna selection algorithm may further improve

the communication throughput. Developing the optimal con-

figuration selection algorithm is left as our future work.

Channel variations. To track channel variations, SWAN

keeps a record of the most recent received CSI csir over the
previous antenna combination and calculates the difference

with the new CSI measurement csin by ˆcsi = csin − csir .
Theoretically, the difference ˆcsi should be minor for static

channel. But the time varying phase and amplitude errors

due to carrier frequency offset (CFO), symbol timing offset

(STO), and sampling frequency offset (SFO) [50, 54] make

the CSI vary even when the channel remains unchanged.

Figure 15 presents the measured CSI difference between

consecutive packets. The phase and amplitude differences are

linear for static channel. Specifically, the amplitude difference

is flat with a fitted line of zero slope. The phase difference

is fitted to a sloped line due to the frequency dependent

errors introduced by STO and SFO [50, 54]. On the other

0 10 20 30 40 50
Subcarrier index

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

Ph
as

e
di

ff
(r

ad
ia

n)

(a)
Satic channel
Varing channel

0 10 20 30 40 50
Subcarrier index

-5
0
5
10
15
20
25
30

A
m

pl
itu

de
 d

iff
 (d

B
) (b)

Satic channel
Varing channel

Figure 15: The CSI difference measured from a static

and a varying channelwith phase difference of ˆcsi plot-
ted in (a) and amplitude difference plotted in (b).

hand, when the channel varies, the linearity of phase and

amplitude differences disappears, as suggested in Figure 15.

Above observations allow us to use linear fitting to track

the channel variance. We thus measure the linearity of both

phase and amplitude of ˆcsi . Specifically, we do the linear

curve fitting, and calculate the goodness of our fit. In sta-

tistics, R2 is used to measure goodness of a fit, which is

calculated as:

R2 =

∑N
1 (ŷi − y)2∑N
1 (yi − y)2

(5)

where N , yi , ŷi and y are the number of data points, the

ith data points, the ith fitted data and the mean of all data,

respectively. We calculate the R2
p and R2

a of the phase and

amplitude of ˆcsi , separately and derive the averaged R2
csi :

R2
csi =

R2
p + e

−‖ϵ ‖R2
a

2
(6)

where ϵ is the slope of the fitted curve of ˆcsi amplitude, which

captures the flatness of the amplitude curve. According to

Eqn 6, R2
csi falls into the range of [0, 1] and we treat the

channel with R2
csi > 0.9 as static and otherwise varied. For

robustness, the average R factors of three most recent three

packets is used. When CSI is not available, RSSI is used for

tracking channel variations. From Figure 14 (c), we see that

RSSI variations is less than 1 dB for static channels and we

thus identify the channel to be varying when the difference

of RSSI relative to the mean is greater than 2 dB for any two

of the three antennas, and for three consecutive packets.

4.2 Evaluation

We evaluate the throughput with the extended antenna array

provided by SWAN. We let one WPJ558 Wi-Fi router work

in AP mode. One Arduino YUN and another WPJ558 work

in client mode and connect to the AP. Arduino YUN has one

antenna and the WPJ558 has three antennas, which are used

15 20 25 30 35 40 45 50 55 60 65 70 75
Throughput (Mbps)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

SWAN with auto antenna selection
SWAN fixed antenna with max average
Original Wi-Fi

Figure 16: CDF of achieved throughput from a SISO

link (between AP and Arduino) at 400 locations.

40 60 80 100 120 140 160 180 200 220
Throughput (Mbps)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

C
D

F

SWAN with auto antenna selection
SWAN fixed antenna with max average
Original Wi-Fi

Figure 17: CDF of achieved throughput from a MIMO

link (between AP and WPJ558) at 400 locations.

for single-input-single-output (SISO) and multi-input-multi-

output (MIMO) experiments, respectively.

Methodology. We conduct both static and mobile experi-

ments. In the static experiment, we put the client at 400 dif-

ferent locations in our office, let AP communicate with the

client, and measure the throughput. The links between the

AP and 155 out of the 400 client locations are under non-LoS

condition. In the mobile experiments, we move the clients

along a pre-defined trajectory and measure the throughput

for different segments. We let the AP work with and without

the antenna array of SWAN. We compare the throughput

from SWAN with that from the original three antennas of

the Wi-Fi AP. To provide a fair comparison, we use a mobile

robot to carry our clients and moves at a fixed 1.4m/s which
is the normal walking speed of a human being.

Static channels.We measure the averaged throughput be-

tween the AP and the Arduino YUN at each of the 400 lo-

cations. Figure 16 plots the throughput achieved using our

antenna selection mechanism with SWAN. We compare with

the original Wi-Fi with its three antennas. We also measure

0 50 100150200250300350400
Location index

-60

-40

-20

0

20

40

60

A
nt

-c
om

b
di

ffe
re

nc
e

(a)

0 10 20 30 40 50 60
Antenna combination index

50

54

58

62

66

70

Th
ro

ug
hp

ut
 (M

bp
s)

(b)

Figure 18: (a) The difference between the antenna com-

binations that achieve highest throughput and those

selected by our auto antenna selectionmechanism. (b)

The measured throughput of all 64 combinations at

one randomly selected location.

the throughput across all 64 fixed antenna combinations in

SWAN, and find out the combination that maximizes the

averaged throughput over the 400 locations. We plot the re-

sults from the three settings in Figure 16. We see that SWAN

with our antenna selection mechanism achieves a 70% quan-

tile of 68 Mbps, which is 11 Mbps and 21 Mbps higher than

fixed antenna combination that can achieve maximum aver-

age throughput and the original Wi-Fi antennas. We repeat

the above experiment with WPJ558 which supports MIMO.

The results are plotted in Figure 17. We see similar fact that

SWAN with our antenna selection mechanism achieves a

70% quantile of 195 Mbps, which is 32 Mbps and 48 Mbps

higher than systems using the fixed antenna combinations

and original three fixed Wi-Fi antennas, respectively.

The experiments show that SWAN improves the Wi-Fi

system throughput in two aspects. First, SWAN provides

higher antenna diversity compared with all existing Wi-Fi

APs with only three fixed antennas. The best antenna com-

bination provides more than 10 Mbps throughput gain on

top of Wi-Fi. But a fixed antenna combination cannot fit

all channel conditions. Therefore, the second improvement

comes from the auto antenna selection according to the chan-

nel measurement. By adjusting the antenna configurations

across locations SWAN can achieve additional 11 Mbps and

32 Mpbs throughput gains over the fixed combinations, for

SISO and MIMO link, respectively. We see SWAN achieves

over 30% throughput improvement on both the SISO and

MIMO settings over the original Wi-Fi antennas.

Antenna selection. We evaluate the performance of our

antenna selection mechanism. We use all 64 antenna for

communication at each of the 400 locations, which gives us

the best antenna combination for each location. Each antenna

combination is represented as a unique number in the range

of [1, 64]. In Figure 18 (a), we compare the best antenna

combination with that selected by our auto antenna selection

mechanism, and plot the difference. Zero difference means

0 5 10 15 20 25 30 35 40 45 50
Segment index

8
13
18
23
28
33
38
43
48
53
58
63
68
73

Th
ro

ug
hp

ut
 (M

bp
s)

Original Wi-Fi
SWAN fixed ant with max average
SWAN with auto ant selection

Figure 19: Averaged SISO throughput at 50 segments

of a pre-defined trajectory.

the auto selected combination gives the best. In experiment,

our mechanism picks the best at 365 out of all 400 locations.

Even for those not picking the best antenna combination,

our pick still gives very high throughput compared with the

best. To illustrate, in Figure 18 (b), we plot the measured

throughput of all 64 antenna combinations at one location.

The highest throughput is achieved with 17th combinations.

Our mechanism selects 29th combination, which achieves a

throughput very close to the best.

Mobile channels.We let the clientmove along a pre-defined

trajectory. We divide the trajectory into 1m segments and

measure the average throughput achieved for each segment.

We plot the throughput of SISO link in Figure 19, and that of

MIMO link in Figure 20. Similar to the static experiments, we

also test the throughput from the best fixed antenna combi-

nation and that from the original Wi-Fi. We see that SWAN

with auto antenna selection outperforms any fixed combi-

nation. SWAN achieves average throughput of 53.3 Mbps,

which is 7.4 Mbps and 14.8 Mbps higher than the best fixed

combinations and that of the original Wi-Fi in SISO case. In

MIMO case, SWAN with auto antenna selection achieves av-

erage throughput of 153.9 Mbps, which is 23.0 Mbps and 34.4

Mbps higher than the other two. The experiment results sug-

gest that our mechanism is able to timely detect the channel

variations in mobility, and switch the antennas in order to

achieve higher throughput. Similar to the static experiments,

SWAN provides gains in two-folds – the antenna diversity

from extended array and channel adaptation from automatic

antenna selection module.

5 SWAN IN SCALE

Previous discussions and experiments are based on our 12-

antenna prototype setting. SWAN can easily scale to a larger

array of antennas. The current design of SWAN is based on

0 5 10 15 20 25 30 35 40 45 50
Segment index

20
40
60
80
100
120
140
160
180
200
220

Th
ro

ug
hp

ut
 (M

bp
s)

Original Wi-Fi
SWAN fixed ant with max average
SWAN with auto ant selection

Figure 20: AveragedMIMO throughput at 50 segments

of a pre-defined trajectory.

a single tier of RF switches, e.g., three SP4T for 12 antennas,

SP8T for 24 antennas, or SP12T for 36 antennas. Through

cascaded connection, we can extend COTS RF switches to

more throws. Figure 21 gives an example where we connect

five SP4T in a cascaded way to form a 16 throws (SP16T)

switch. A single MCU, e.g., an Arduino board, coordinates

all SP4T switches and builds a SP16T transparent to the AP.

Using three such SP16T, we can get a 48 antenna array.

The control exchange of SWAN can also scale. A key factor

that limits the number of antennas that SWAN can support

is the storage required to store the template TCP packets

for signaling different antenna combinations. The size of

each template sk_buff is 274 bytes. For an antenna array of

192 antennas (i.e., 64 to each radio chain), the RAM space

required is 71.8Mb, which is affordable on normal Wi-Fi

routers, e.g., both WDR4300 and WPJ558 have 128Mb RAM.

To further scale beyond that, SWAN assembles ad hoc con-

trol packets. SWAN employs a general packet template with

intact IP and TCP headers but empty payload. When assem-

bling the ad hoc control packet, SWAN duplicates the empty

TCP template and insert the antenna combination descriptor

ant-comb to the payload. The control packet is then sent to

the Arduino, which however does not need to decode the

packet so not verify the CRC (which does not likely match

the control payload) in ag71xx_rx_packet() in the kernel. By

doing this, SWAN only needs minimum RAM space to save

the empty TCP template, with a trade-off in slight increase

of its tAP time and thus slight increase of its chance in an-

tenna mis-configurations (which however can be detected

and annotated in most cases by SWAN).

6 RELATEDWORK

Antenna extension on commodity Wi-Fi. Phaser [11]

enables a large phased-array on commodity by combing

SP4T SP4T SP4T SP4T

SP4T

To one of the radio chains

MCU

4 antennas 4 antennas 4 antennas 4 antennas

SPP4SP

SPP4SP SP4SP4 SPP4SP SPP4SP

GPIO

Ethernet

Figure 21: Five SP4T switches can be stitched together

to form a SP16T.

the channel measurement (CSI) collected by multiple Wi-

Fi NICs. Phaser has more radio chains than antennas since

one radio chain from each of those NICs is connected with

each other for synchronization purpose and thus wasted,

which results in significant hardware costs. The multiple

NICs used by Phaser are on different Wi-Fi APs so that they

do not work cooperatively as a cohort to provide general

Wi-Fi communication services. Prior works [1, 27, 38] also

emulate large antenna arrays using Synthetic Aperture Radar

(SAR). SAR however, requires physical movement of the

antennas, incurring huge delay [2], and thus cannot meet the

μs level switching speed requirement. AmorFi [24] connects

multiple radio front ends with multiple APs together via

optical fiber and then selects the radio front ends for each AP.

AmorFi requires dedicated and costly hardware and cannot

be extended to other applications such as AoA estimation.

Many antenna system. Many efforts has been made to

build many antenna systems for distributed MIMO [14, 25],

multi-user beamforming [4, 10, 16, 42, 43, 45, 55, 56], and full

duplex communication system [5, 40, 44], based on software-

define-radio (SDR) platform. All those systems enables tens

of radio chains by connecting multiple synchronized SDR

boards together to work as a single AP. The channel capacity

increases and the total user the system can simultaneously

communicate with also increases, proportionally with the

radio chains. The number of radio chain on a single piece of

SDR is, however, still limited, e.g., four for a single WRAP

board. Therefore, multiple pieces of SDRs are required to en-

able many anatennas, which results in tremendous hardware

cost and makes those techniques impractical to be directly

implemented on commodity Wi-Fi systems.

Phased-array. Phased-array is widely used in many dif-

ferent systems as a sensing interface to estimate AoA or

AoD [3, 29, 31]. Recent advances [11] have built phased-

array on commodity Wi-Fi with three antennas and enables

applications such as indoor localization [11, 26, 27, 53], pas-

sive tracking [23, 51], security [52], Wi-Fi imaging [15] and

activity recognition [1, 38] with the estimated AoA or AoD.

SWAN enables a new opportunity to greatly increase the

antenna number in the phased-array and thus provide angle

estimation with much finer resolution and higher accuracy.

Antenna diversity. Equipping MIMO systems with more

antennas than radio chains and selecting the optimal an-

tenna group to perform the MIMO communication can im-

prove the capacity and reliability of MIMO communica-

tions, with significantly reduced hardware complexity and

cost [6, 12, 34, 35, 41]. SWAN is the first system that realizes

similar gain on commodity Wi-Fi systems, with low cost

COTS hardware components. Theoretically, spatial shift key-

ing (SSK) [9, 19, 21, 46] and spatial modulation [20, 32, 57] can

make use of the antenna diversity and achieve multi-folds

throughput improvement, which however requires modifica-

tions to the encoding and decoding modules of Wi-Fi PHY.

Hybrid beamforming [8, 33, 49] harvests the spatial diversity

with analog beam steering using phase shifter and share sim-

ilar architecture with SWAN. Existing hybrid beamforming

systems are based on software-define-radio platforms and

are impossible to be directly applied to commodity Wi-Fi de-

vices without addressing similar challenges that SWAN has

met including the fast control exchanging and reliable anno-

tation. Most existing efforts including hybrid beamforming

do not support antenna switching and thus cannot harness

the spatial diversity for wireless sensing applications.

7 CONCLUSION

This paper introduces our design and implementation experi-

ence of SWAN. SWAN serves as a general, plug-and-play an-

tenna extension solution to commodityWi-Fi devices. SWAN

enables μs level control between the AP and the Arduino

MCU. SWAN provides easy-to-use user interface for build-

ing diverse applications. Our experimental study shows that

SWAN provides fast and reliable antenna configuration that

helps to significantly improve the performance of RF sensing

and communication applications.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

and shepherd for their valuable comments and helpful sug-

gestions s that improve the quality of this paper. The authors

would also like to thank Fan Yi and Agustinus Wellson Ten-

gourtius for helping with the experimentation. The work is

supported by the Singapore MOE Tier 1 grant RG125/17, Tier

2 grant MOE2016-T2-2-023, and NTU CoE grant M4081879.

REFERENCES
[1] Fadel Adib and Dina Katabi. 2013. See Through Walls with WiFi!. In

ACM SIGCOMM.

[2] Fadel Adib, Swarun Kumar, Omid Aryan, Shyamnath Gollakota, and

Dina Katabi. 2013. Interference Alignment by Motion. In ACM Mobi-

Com.

[3] Noach Amitay, Victor Galindo, and Chen Pang Wu. 1972. Theory and

analysis of phased array antennas. (1972).

[4] Narendra Anand, Ryan E. Guerra, and Edward W. Knightly. 2014. The

Case for UHF-band MU-MIMO. In ACM MobiCom.

[5] Ehsan Aryafar, Mohammad Amir Khojastepour, Karthikeyan Sundare-

san, Sampath Rangarajan, and Mung Chiang. 2012. MIDU: Enabling

MIMO Full Duplex. In ACM MobiCom.

[6] R. S. Blum and J. H. Winters. 2002. On optimum MIMO with antenna

selection. IEEE Communications Letters (2002).

[7] Lu Chen, Fei Wu, Jiaqi Xu, Kannan Srinivasan, and Ness Shroff. 2017.

BiPass: Enabling End-to-End Full Duplex. In ACM MobiCom.

[8] Z. Chen, X. Zhang, S. Wang, Y. Xu, J. Xiong, and X. Wang. 2017. BUSH:

Empowering large-scale MU-MIMO inWLANs with hybrid beamform-

ing. In IEEE INFOCOM.

[9] C. M. Cheng, P. H. Hsiao, H. T. Kung, and D. Vlah. 2007. Trans-

mit Antenna Selection Based on Link-layer Channel Probing. In IEEE

WOWMOM.

[10] Adriana B. Flores, Sadia Quadri, and Edward W. Knightly. 2016. A

Scalable Multi-User Uplink for Wi-Fi. In USENIX NSDI.

[11] Jon Gjengset, Jie Xiong, Graeme McPhillips, and Kyle Jamieson. 2014.

Phaser: Enabling Phased Array Signal Processing on Commodity WiFi

Access Points. In ACM MobiCom.

[12] A. Gorokhov, D. A. Gore, and A. J. Paulraj. 2003. Receive antenna

selection for MIMO spatial multiplexing: theory and algorithms. IEEE

Transactions on Signal Processing (2003).

[13] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2010.

Predictable 802.11 Packet Delivery from Wireless Channel Measure-

ments. In ACM SIGCOMM.

[14] Ezzeldin Hamed, Hariharan Rahul, Mohammed A. Abdelghany, and

Dina Katabi. 2016. Real-time Distributed MIMO Systems. In ACM

SIGCOMM.

[15] Donny Huang, Rajalakshmi Nandakumar, and Shyamnath Gollakota.

2014. Feasibility and Limits of Wi-fi Imaging. In ACM SenSys (SenSys

’14).

[16] Christopher Husmann, Georgios Georgis, Konstantinos Nikitopoulos,

and Kyle Jamieson. 2017. Flexcore: Massively Parallel and Flexible

Processing for Large MIMO Access Points. In USENIX NSDI.

[17] P. Ioannides and C. A. Balanis. 2005. Uniform circular arrays for smart

antennas. IEEE Antennas and Propagation Magazine (2005).

[18] A Ismail and A Abidi. 2005. A 3.1 to 8.2 GHz direct conversion receiver

for MB-OFDM UWB communications. In IEEE ISSCC.

[19] J. Jeganathan, A. Ghrayeb, and L. Szczecinski. 2008. Generalized space

shift keying modulation for MIMO channels. In IEEE PIMRC.

[20] Jeyadeepan Jeganathan, Ali Ghrayeb, and Leszek Szczecinski. 2008.

Spatial modulation: Optimal detection and performance analysis. IEEE

Communications Letters (2008).

[21] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron. 2009. Space

shift keying modulation for MIMO channels. IEEE Trans. on Wireless

Communications (2009).

[22] Y. Jiang, Z. Li, and J. Wang. 2017. PTrack: Enhancing the Applicability

of Pedestrian Tracking with Wearables. In IEEE ICDCS.

[23] Kiran Raj Joshi, Dinesh Bharadia, Manikanta Kotaru, and Sachin Katti.

2015. WiDeo: Fine-grained Device-free Motion Tracing using RF

Backscatter.. In USENIX NSDI.

[24] Ramanujan K Sheshadri, Mustafa Y. Arslan, Karthikeyan Sun-

daresan, Sampath Rangarajan, and Dimitrios Koutsonikolas. 2016.

AmorFi: Amorphous WiFi Networks for High-density Deployments.

In CoNEXT.

[25] HRSKD Katabi. 2012. Megamimo: Scaling wireless capacity with user

demands. (2012).

[26] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015.

SpotFi: Decimeter Level Localization Using WiFi. In ACM SIGCOMM.

[27] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. 2014. Ac-

curate Indoor Localization with Zero Start-up Cost. In ACMMobiCom.

[28] Yang Liu and Zhenjiang Li. [n. d.]. aLeak: Privacy Leakage through

Context-Free Wearable Side-Channel.

[29] Robert J Mailloux. 2005. Phased array antenna handbook. Artech House

Boston.

[30] SWANmaintenance page. [n. d.]. http://wands.sg/AtherosCSI/SWAN/.

[31] Paul F McManamon, Terry A Dorschner, David L Corkum, Larry J

Friedman, Douglas S Hobbs, Michael Holz, Sergey Liberman, Huy Q

Nguyen, Daniel P Resler, Richard C Sharp, et al. 1996. Optical phased

array technology. Proc. IEEE (1996).

[32] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun. 2008. Spatial

Modulation. IEEE Trans. on Vehicular Technology (2008).

[33] Andreas F Molisch, Vishnu V Ratnam, Shengqian Han, Zheda Li, Sinh

Le Hong Nguyen, Linsheng Li, and Katsuyuki Haneda. 2017. Hybrid

beamforming for massive MIMO: A survey. IEEE Communications

Magazine (2017).

[34] A. F. Molisch and M. Z. Win. 2004. MIMO systems with antenna

selection. IEEE Microwave Magazine (2004).

[35] A. F. Molisch, M. Z. Win, Yang-Seok Choi, and J. H. Winters. 2005.

Capacity of MIMO systems with antenna selection. IEEE Transactions

on Wireless Communications (2005).

[36] S. Nanda and K. M. Rege. 1998. Frame error rates for convolutional

codes on fading channels and the concept of effective Eb/N0. IEEE

Transactions on Vehicular Technology (1998).

[37] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and

Songwu Lu. 2010. MIMO Rate Adaptation in 802.11N Wireless Net-

works. In ACM MobiCom.

[38] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel.

2013. Whole-home Gesture Recognition Using Wireless Signals. In

ACM MobiCom.

[39] Hariharan Rahul, Farinaz Edalat, Dina Katabi, and Charles G. Sodini.

2009. Frequency-aware Rate Adaptation and MAC Protocols. In ACM

MobiCom.

[40] T. Riihonen, S. Werner, and R. Wichman. 2011. Mitigation of Loopback

Self-Interference in Full-Duplex MIMO Relays. IEEE Transactions on

Signal Processing (2011).

[41] S. Sanayei andA. Nosratinia. 2004. Antenna selection inMIMO systems.

IEEE Communications Magazine (2004).

[42] Clayton Shepard, Abeer Javed, and Lin Zhong. 2015. Control Channel

Design for Many-Antenna MU-MIMO. In ACM MobiCom.

[43] Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas

Marzetta, Richard Yang, and Lin Zhong. 2012. Argos: Practical Many-

antenna Base Stations. In ACM MobiCom.

[44] A. Shojaeifard, K. K. Wong, M. Di Renzo, G. Zheng, K. A. Hamdi, and

J. Tang. 2017. Massive MIMO-Enabled Full-Duplex Cellular Networks.

IEEE Transactions on Communications (2017).

[45] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. 2016.

Practical MU-MIMOUser Selection on 802.11Ac Commodity Networks.

In ACM MobiCom.

[46] Sanjib Sur, Teng Wei, and Xinyu Zhang. 2015. Bringing Multi-antenna

Gain to Energy-constrained Wireless Devices. In ACM IPSN.

[47] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and

Geoffrey M. Voelker. 2011. Sora: High-performance Software Radio

Using General-purpose Multi-core Processors. Commun. ACM (2011).

[48] Starsky H. Y. Wong, Hao Yang, Songwu Lu, and Vaduvur Bharghavan.

2006. Robust Rate Adaptation for 802.11 Wireless Networks. In ACM

MobiCom.

[49] Xiufeng Xie, Eugene Chai, Xinyu Zhang, Karthikeyan Sundaresan,

Amir Khojastepour, and Sampath Rangarajan. 2015. Hekaton: Efficient

and Practical Large-Scale MIMO. In ACM MobiCom.

[50] Yaxiong Xie, Zhenjiang Li, and Mo Li. 2015. Precise Power Delay

Profiling with Commodity WiFi. In ACM MobiCom.

[51] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2016. xD-Track:

Leveraging Multi-dimensional Information for Passive Wi-Fi Tracking.

In ACM HotWireless.

[52] Jie Xiong and Kyle Jamieson. 2010. SecureAngle: Improving Wireless

Security Using Angle-of-arrival Information. In ACM MobiCom.

[53] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: A Fine-grained Indoor

Location System. In USENIX NSDI.

[54] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. 2015. Tone-

Track: Leveraging Frequency-Agile Radios for Time-Based Indoor

Wireless Localization. In ACM MobiCom.

[55] Jie Xiong, Karthikeyan Sundaresan, Kyle Jamieson, Mohammad A.

Khojastepour, and Sampath Rangarajan. 2014. MIDAS: Empowering

802.11Ac Networks with Multiple-Input Distributed Antenna Systems.

In ACM CoNEXT.

[56] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,

Jiansong Zhang, and Yongguang Zhang. 2013. BigStation: Enabling

Scalable Real-time Signal Processingin Large Mu-mimo Systems. In

ACM SIGCOMM.

[57] A. Younis, W. Thompson, M. Di Renzo, C. X. Wang, M. A. Beach, H.

Haas, and P. M. Grant. 2013. Performance of Spatial Modulation Using

Measured Real-World Channels. In IEEE VTC Fall.

[58] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang. 2008. A Practical

SNR-Guided Rate Adaptation. In IEEE INFOCOM.

